Fast wave computation via Fourier integral operators
نویسندگان
چکیده
منابع مشابه
Fast wave computation via Fourier integral operators
This paper presents a numerical method for “time upscaling” wave equations, i.e., performing time steps not limited by the Courant-Friedrichs-Lewy (CFL) condition. The proposed method leverages recent work on fast algorithms for pseudodifferential and Fourier integral operators (FIO). This algorithmic approach is not asymptotic: it is shown how to construct an exact FIO propagator by 1) solving...
متن کاملFast Computation of Fourier Integral Operators
We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form ∫ ea(x, ξ) f̂(ξ)dξ at points given on a Cartesian grid. Here, ξ is a frequency variable, f̂(ξ) is the F...
متن کاملA Fast Butterfly Algorithm for the Computation of Fourier Integral Operators
This paper is concerned with the fast computation of Fourier integral operators of the general form ∫ Rd e f(k)dk, where k is a frequency variable, Φ(x, k) is a phase function obeying a standard homogeneity condition, and f is a given input. This is of interest for such fundamental computations are connected with the problem of finding numerical solutions to wave equations, and also frequently ...
متن کاملBilinear Fourier Integral Operators
We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of or...
متن کاملFourier Integral Operator Canonical Computation with Wave Packets
Abstract. We develop an algorithm for the canonical computation of general Fourier integral operators whose canonical relations are graphs. The algorithm is based on dyadic parabolic decomposition using wave packets and enables the discrete approximate evaluation of the action of such operators on data in the presence of caustics. The procedure consists in the construction of a universal operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2012
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-2012-02557-9